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Abstract

This paper presents a study of fuzzy Hammerstein models as part of a model predictive control strategy. The model configuration includes a
nonlinear static block followed by a linear dynamic block, where the static nonlinearity is represented by a fuzzy model.

The model and controller have been realized in the MATLAB environment. Simulation examples demonstrate the potential of such structured
models for application to the control of a solid oxide fuel cell.
© 2005 Elsevier B.V. All rights reserved.
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. Introduction

Solid oxide fuel cell (SOFC) has attracted considerable inter-
st during the past decade as highly effective and environmen-
ally acceptable sources of electrical energy. The SOFC power
lant is known to be a potential alternative in the electric utility,
or domestic, commercial and industrial sectors. It produces less
armful chemical and acoustic emissions at higher efficiency
han the conventional technologies.

The main features of the SOFC are all solid-state construc-
ion and high-temperature operation. The combination of these
eatures leads to a number of unique characteristics and advan-
ages for this type of fuel cell, including flexibility in cell and
tack designs, manufacturing processes, and power plant sizes.

Padullés et al. [1] develop a SOFC model, which includes
pecies dynamics, but it does not consider temperature dynam-
cs. Hall and Colclaser [2] modeled a 3-kW SOFC but they
id not take into account dynamics of the chemical species.
chenbach develops a mathematical model of a planar SOFC,
hich concentrates on effects of temperature changes on out-
ut voltage response [3]. Temperature dynamics is modeled in a

gated the transient behavior of a stand-alone SOFC caused by a
load change in [4]. It shows that the relaxation time of the output
voltage is highly related to the effect of temperature dynamics.
The application of the AutoRegression with eXogenous signal
(ARX) identification algorithm to compute linear system mod-
els is presented in [5]. The Nonlinear AutoRegressive Exogenous
(NARX) approach is used in [6] to analyze the dynamics of this
fuel cell.

For nonlinear dynamic systems, the conventional techniques
of modeling and identifications are difficult to implement and
sometimes impracticable. However, others techniques based on
fuzzy logic are more and more used for modeling this kind of pro-
cess [7]. Among the different fuzzy methods, the Takagi–Sugeno
model has attracted most attention [8]. In fact, this model con-
sists of if-then rules with fuzzy antecedents and mathematical
functions in the consequent part. The task of system identi-
fication is to determine both the nonlinear parameters of the
antecedents and the linear parameters of the rules consequent.
A fuzzy logic control of three-phase inverters for fuel cell sys-
tems is presented in [9].

Takagi–Sugeno fuzzy models are suitable to model a large

hree-dimensional (3-D) vector space. The same author investi-

∗ Tel.: +34 953 648518; fax: +34 953 648508.
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class of nonlinear systems [10,11]. Fuzzy modeling and identi-
fication from measured data are effective tools for the approxi-
mation of uncertain nonlinear systems. Most attention has been
devoted to single-input, single-output (SISO) or multi-input,
single-output (MISO) systems. Recently, also methods have
378-7753/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
oi:10.1016/j.jpowsour.2005.08.041
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Nomenclature

Cs
p heat capacity of the cell unit (J kg−1 K−1)

E0 standard reversible cell potential (V)
F Faraday’s constant (C kmol−1)
h̄in

ai , h̄
in
ci anode (cathode) inlet partial molar enthalpies

(J mol−1)
h̄s

i partial molar enthalpies at stack temperature
(J mol−1)

i stack current density (A m−2)
iL limiting current density (A m−2)
i0 exchange current density (A m−2)
I stack current (A)
Ki valve molar constants
Kr constant dependent on Faraday’s constant and

number of electrons in the reaction (kmol s− A−1)
Ms mass of the cell unit (kg)
n number of electrons participating in the reaction
N in

i , No
i molar flow rates (mol s−1) of the ith reactant at

the cell input and output, respectively
Nr

i reaction rate (mol s−1) of the ith reactant
NH2 hydrogen flow that reacts (kmol s−1)
N0 number of cells in stack
N in

ta , N in
tc anode (cathode) total inlet molar flow (mol s−1)

pH2 , pH2O partial pressures of hydrogen and water (atm)
pi partial pressure of the ith reactant (atm)
Pdc stack dc power (W)
r ohmic resistance (� m2)
R gas constant (8.31 J mol−1 K−1)
Rai, Rci anode (cathode) total rate of production of species

(mol s−1)
T s stack solid average temperature (K)
T0 temperature constant (K)
V compartment volume (m3)
Vdc cell voltage (V)
Ve volume of the cell unit (m3)
Vo open-circuit reversible potential (V)
xi mole fractions of species
xin

ai, x
in
ci anode (cathode) inlet mole fractions

Greek letters
α electron transfer coefficient of the reaction at the

electrode
αr, βr ohmic resistance constants
β scaling factor
ηact activation losses (V)
ηcon concentration losses (V)
τH2 time constant associated with the hydrogen flow

and is a function of temperature (s)
ξ total gas components in anode or cathode

been proposed to deal with multi-input, multi-output (MIMO)
systems [12–14].

The Hammerstein models are special kinds of nonlinear sys-
tems where the nonlinear block is static and is followed by a

linear system. These models have applications in many engi-
neering problems and therefore, identification of Hammerstein
models has been an active research area for many years. There
exist a large number of research papers in the literature on the
topics of Hammerstein model identifications [15–18].

In this paper, a fuzzy Hammerstein (FH) model to represent
SOFC is introduced where the static nonlinearity is represented
by a fuzzy model. Therefore, the model can be identified with
the help of input–output data.

Model predictive control (MPC) has been an active field of
research during the last three decades, driven both by numer-
ous successful applications of the technology [19–21] and by
the research interests of the academia. The main reason of this
success is the ability of MPC to control multivariable systems
under constraints in an optimal way. In model predictive control,
the control action is computed by solving an optimization prob-
lem on line in each sampling period. This is the main difference
from conventional control, where a precomputed control law is
employed. Many applications of MPC based on fuzzy prediction
models have been reported [22–25].

The output of the SOFC has a high voltage fluctuation in
response to the load variations. On the other hand, the SOFC
produces an unregulated voltage due to its internal dynamics.
An MPC is used to control the output voltage of the SOFC by
controlling the fuel flow to keep the voltage at a desired value.

The paper is organized as follows. In Section 2, general prin-
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iples of SOFC are explained. In Section 3, the FH model is
ntroduced. The MPC is formulated in Section 4. Simulation
xamples illustrating the performance of SOFC are presented in
ection 5, and finally, conclusions are provided in Section 6.

. Solid oxide fuel cell dynamic model

The proposed stack model is based on the following assump-
ions:

1) Stack is fed with hydrogen and air, therefore the fuel pro-
cessor dynamics is not included.

2) A uniform gas distribution among cells is assumed, since
there is a small deviation of the gas distribution among the
cells.

3) There is no heat transfer among cells. Each cell has the same
temperature and current density [1].

4) The channels that transport gases along the electrodes have
a fixed volume, but their lengths are small, so that it is only
necessary to define one single pressure value in their interior.
The ratio of pressures between the interior and exterior of
the channel is large enough to consider that orifice is choked
[1,26].

Fig. 1 shows the dynamic model of SOFC, along with its
ajor chemical reactions.

.1. Electrochemical model

The change in concentration of each species that appears in
he chemical reactions can be written in terms of input and out-
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Fig. 1. Dynamic model of SOFC.

put flow rates and exit molarity due to the following chemical
reaction [27,28]:

V

RT

d

dt
pi = N in

i − No
i − Nr

i (1)

In agreement with the basic electrochemical relationships, the
molar flow that reacts can be calculated as:

Nr
i = N0I

2F
= 2KrI (2)

For orifice that is choked [26], molar flow of any gas through
the valve is proportional to its partial pressure inside the channel
according to the following expressions [1]:

NH2

pH2

= KH2 ,
NH2O

pH2O
= KH2O (3)

Considering the hydrogen partial pressure,

V

RT

d

dt
pH2 = N in

H2
− No

H2
− 2KrI (4)

Applying the Laplace transformation to the above equations
and isolating the hydrogen partial pressure, yields the follow-
ing expressions:

pH2 = 1/KH2

1 + τH2 (s)
(N in

H2
− 2KrI) (5)

τH2 = V

KH2RT
(6)

A schematic of the system is displayed in Fig. 2.

ed flo
Fig. 2. Simplifi
 w schematic.
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2.2. Thermal model

The fuel cell power output is closely related to the temperature
of the cell unit. The heat storage in the thin fuel unit gas or
oxidant gas layer is neglected. The thin fuel unit or oxidant gas
layers are lumped to the cell unit and gas layers are assumed to
have the same temperature as the cell unit [2–4].

The energy balance equation for each cell unit is as follows:

MsCs
p

dT s

dt
= N in

ta

⎡
⎣ ξ∑

i=1

xin
ai(h̄

in
ai − h̄s

i )

⎤
⎦−

ξ∑
i=1

h̄s
iRai

+ N in
tc

⎡
⎣ ξ∑

i=1

xin
ci(h̄

in
ci − h̄s

i )

⎤
⎦−

ξ∑
i=1

h̄s
iRci − Pdc

(7)

Under the ideal gas supposition, the partial molar enthalpies are
calculated using

h̄i = h̄ref
i +

∫ T

Tref

cp,i(u) du (8)

and coefficients of the specific heats cp,i,

cp,i = ai + biT + ciT
2 + diT

3 (9)
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α is the transfer coefficient, which is considered to be the frac-
tion of the change in polarization that leads to a change in the
reaction rate constant and its value is usually 0.5 for the fuel cell
application.

Tafel plots provide a visual understanding of the activation
polarization of a fuel cell. They are used to measure the exchange
current density, given by the extrapolated intercept at ηact = 0
which is a measure of the maximum current that can be extracted
at negligible polarization, and the transfer coefficient (from the
slope).

The usual form of the Tafel equation that can be easily
expressed by a Tafel plot is,

ηact = a + b ln i (14)

where α = (−RT/αnF)ln i0 and b = RT/αnF.
The term b is called the Tafel slope, and is obtained from the

slope of a plot of ηact as a function of ln i. The Tafel slope for
an electrochemical reaction is about 110 mV per decade at room
temperature. Decade is log current density (mA cm−2).

Ohmic losses occur because of resistance to the flow of ions
in the electrolyte and resistance to the flow of electrons through
the electrode materials. This resistance is dependent on the cell
temperature and is obtained by [29]:

r = αr exp

[
βr

(
1

T 0 − 1

T

)]
(15)
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re encountered in standard reference tables. The reference
nthalpy stands for energy at standard reference temperature and
onsiders the heat of formation for each gas species to account
or energy change on chemical reaction.

.3. Nernst’s equation

Applying Nernst’s equation and Ohm’s law (taking into
ccount ohmic, concentration, and activation losses), the stack
s connected in series and the stack output voltage is represented
s follows [27–29]:

dc = Vo − rI − ηact − ηcon (10)

o = N0

(
E0 + RT

2F

[
ln

xH2x
0.5
O2

xH2O

])
(11)

or the reason that the reactant is consumed at the electrode
y electrochemical reaction, there is a loss of potential due to
he inability of the surrounding material to maintain the initial
oncentration of the bulk fluid. Concentration loss equation is
iven by [2,27–29]:

con = RT

nF
ln

(
1 − i

iL

)
(12)

ctivation polarization is existent when the rate of an elec-
rochemical reaction at an electrode surface is controlled by
luggish electrode kinetics. Activation loss equation is as fol-
ows:

act = RT

αnF
ln

(
i

i0

)
(13)
. Fuzzy Hammerstein model

Fuzzy systems can be used to model human knowledge in
ngineering problems. This knowledge may be classified into
wo categories: conscious knowledge explicitly expressible in
ords, and subconscious knowledge that a human expert trans-

orms into actions but cannot explain in words.
Conscious knowledge can be expressed in terms of fuzzy

f-then rules and implement the rules in fuzzy systems. For sub-
onscious knowledge, the human expert can be considered as a
lack box. Thus, subconscious knowledge is represented by a set
f input–output pairs. Hence, a problem of fundamental impor-
ance is to construct fuzzy systems from input–output pairs. To
olve this problem, it is necessary to determine the membership
unctions of the fuzzy input and output sets, and define a fuzzy
ule base.

Some of the most important applications of fuzzy theory have
een focused on control problems where human operators, who
ntuitively know the behavior of the system, provide the best
ontrol. The human operator however may not always be able
o satisfactorily control a process. Then, the control strategy

ay take the form of a set of situation–action pairs, known to
he human operator, among which the control system can be
esigned. This provides the core knowledge for the system, but
sually does not completely describe it. To perfect this descrip-
ion, one must define fuzzy sets representing the range of control
arameters or sensor fields. The system description is then finely
uned by adjusting the fuzzy sets and the rule base.

The fuzzy Hammerstein model consists of a series connection
f a memoryless nonlinearity, f, and linear dynamics, G, where
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Fig. 3. Multivariable Hammerstein model.

y = [y1, . . . , yny ]T is the output vector, u = [u1, . . . , unu ]T the
input vector, and v = [v1, . . . , vnu ]T represents the transformed
input variables, as shown in Fig. 3 [30].

If the static nonlinearity is separately parameterized, f (·) can
be formulated as a set of functions vh = fh(u) for h = 1, . . ., nu.
In this paper, the functions fh(u) are represented by zero-order
Takagi–Sugeno fuzzy models formulated as a set of rules [8].

Rh
j : If u1 is A1,j and unu is Anu,j then vh = ph

j (16)

From a given input vector, u, the output of the fuzzy model,
vh, is inferred by computing the weighted average of the rule
consequents:

vh =
∑Nr

j=1βj(u)ph
j∑Nr

j=1βj(u)
(17)

The weight, 0 ≤ βj(u) ≤ 1, represents the overall truth value of
the jth rule calculated based on the degrees of membership.

The static nonlinearity is followed by a multivariable lin-
ear dynamic ARX model. Hence, the Nonlinear AutoRegressive
Moving Average with eXogenous input (NAARX) model repre-
sentation of the MIMO Hammerstein model is given by:

ŷ(k) =
na∑
i=1

Aiy(k − i) +
nb∑
i=1

Bif (u(k − i − nd)) (18)

w
u
t
m

discrete time delay. A1, . . . , Ana and B1, . . . , Bna are ny × ny

and ny × nu matrices, respectively.
Hence, a compact form of the fuzzy Hammerstein model that

represents a SISO process is formulated as,

ŷ(k) =
na∑
i=1

aiy(k − 1) +
nb∑
i=1

bi

Nr∑
j=1

βj(u(k − i − nd))pj

=
na∑
i=1

aiy(k − 1) +
Nr∑
j=1

nb∑
i=1

bipjβj(u(k − i − nd)) (19)

The parameters ai and bi belonging to the linear dynamic model
are called the linear parameters, while the parameters pj, belong-
ing to the fuzzy model, are called the nonlinear parameters.
The structure of the resulting model is shown in Fig. 4, where q
denotes the shift operator, i.e., u(k)q−1 = u(k – 1).

4. Model predictive control

The first step in designing an MPC system is the derivation
of a model that the controller will use for the optimization. This
model should be as accurate as possible, while being simple
enough to allow for repeated calculations during the optimiza-
tion.

Model predictive control (MPC) refers to a class of control
a
a

m
a

v
e
y

fuzzy
here y(k), . . ., y(k − na + 1) and u(k − nd), . . .,
(k − nb − nd + 1) are the lagged outputs and inputs of

he linear dynamic system, where na and nb denote the
aximum lags for the past outputs and inputs, and nd is the

Fig. 4. Structure of the
lgorithms in which a dynamic process model is used to predict
nd optimize system performance.

MPC is rather a methodology than a single technique. The
ethodology of controllers belonging to the MPC family is char-

cterized by the following strategy illustrated in Fig. 5.
As shown in Fig. 5, in MPC, the future outputs (fuel cell

oltage) for a determined prediction horizon Hp are predicted at
ach instant k using a prediction model. These predicted outputs

ˆ (k + j), j = 1, ..., Hp depend on the state of the model at the

Hammerstein model.
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Fig. 5. Strategy of model predictive controller.

current time k (given, for instance, by the past inputs and outputs)
and on the future control signals u(k + j).

The control signal (fuel flow) changes only inside the control
horizon, Hc, remaining constant afterwards,

u(k + j) = u(k + Hc − 1), j = Hc, ..., Hp (20)

The set of control signals is calculated by optimizing a cost
function in order to keep the process as close as possible to the
reference trajectory (fuel cell voltage reference), ω(k + j), j = 1,
. . ., Hp. This criterion usually requires a quadratic function of
the errors between the predicted output signal and the reference
trajectory. The control effort is included in the objective function
in most cases. An explicit solution can be obtained if the criterion
is quadratic, the model is linear and there are no constraints.
Otherwise an iterative optimization method has to be used.

Due to the relatively simple block-oriented structure, the
application of Hammerstein models in MPC is more straight-
forward than the application of the general NARX or NAARX
models. In this section, the FH model is implemented in MPC
by inverting the fuzzy model that represents static nonlinearity
[31]. As the remaining part of the prediction model is the linear
dynamic part of the FH model, the MPC optimization can be
solved by quadratic programming.

The combination of the inverse fuzzy model and the nonlinear
system results in a transformed dynamical system. This system
i
n

m
a
i

(GPC). This is a significant advantage compared to other non-
linear models, which require the use of nonlinear programming
or linearization techniques.

In order to cope with the model-plant mismatch and also with
disturbances (load changes), the internal model control (IMC)
scheme [32] is used. The resulting scheme is depicted in Fig. 6.

In general, the GPC algorithm computes the control sequence
{�u(k + j)}, j = 1, . . ., Hc, such that the following quadratic cost
function is minimized:

J(Hp1, Hp2, Hc, λ) =
Hp2∑

j=Hp1

(ω(k + j) − ŷ(k + j))2

+ λ

Hc∑
j=1

∆u2(k + j − 1) (21)

Here, ŷ(k + j) denotes the predicted system output, ω(k + j)
the modified setpoint that is assumed to be known in advance,
Hp1 the minimum costing horizon, Hp2 the maximum costing
or prediction horizon, Hc the control horizon, and λ is the move
suppression coefficient.

5. Results

The inputs to the FH model are the average temperature, the
f
m
t
e

s

s linear if the system is of the Hammerstein type and the static
onlinearity is identical to the fuzzy model.

As the inversion of the single-input single-output and
ultiple-input single-output fuzzy model is a straightforward

nalytical procedure, the computational demand of the controller
s quite comparable to the linear generalized predictive control
uel flow, the air flow, and the current. The output of the FH
odel is the voltage (y1). The average temperature is taken as

he arithmetic average of that of the cathode inlet and cathode
xhaust, under constant air flow.

The linear subsystem in the Hammerstein model is repre-
ented using the rational orthonormal bases with fixed poles
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Fig. 6. Fuzzy Hammerstein model based predictive control scheme.

studied in [33,34],

Bl(q) =
(√

1 − |ξl|2
q − ξl

)
l−1∏
i=0

(
1 − ξ̄iq

q − ξi

)
, l ≥ 1 (22)

B0(q) =
(√

1 − |ξ0|2
q − ξ0

)
(23)

where (�0, �1, . . ., �p−1) are the poles of the bases.
In order to determine the model order of the linear subsystem,

as well as initial guesses for the location of the poles of the bases,
the same input–output data are used to identify a linear model of
the process using a subspace method. System identification tool-
box for use with MATLAB [35] is used for the identification of
the linear model. As a result of the identification process a fourth
order model is estimated as the linear part of the Hammerstein
model.

In this paper, the rules of the fuzzy system are designed based
on the available a priori knowledge and the parameters of the
membership, and the consequent are adapted in a learning pro-
cess based on the available input–output data.

For a good model performance, the antecedent fuzzy sets on
the input variables are designed. Fig. 7 shows the membership
functions corresponding to temperature, current and fuel flow.
The nominal operating conditions of the column considered in
t

c
e
t
c
fl
c
c

f
m
p
fl

the requested cell current. The variation of fuel flow is depicted
in Fig. 9a.

The functioning at low cell current decreases the power pro-
duction and the stack temperature. An increase of the air uti-
lization factor tends to a higher power generation and to a large
increase of the SOFC temperature. The variation of temperature
is described in Fig. 9b.

Two different controller configurations are used to illustrate
the performance of the SOFC.

Fig. 7. Antecedent membership functions.
his example are given in Table 1 [36,37].
The amount of fuel flow can be controlled according to the

urrent. The current is proportional to the terminal load. It is
vident that an increase in the load growths’ current, which in
urn decreases output voltage of the fuel cell. The increase in
urrent increases fuel flow rate. This increase increments power
ow from the SOFC to the load. Fig. 8a shows the load step
hanges while Fig. 8b represents the output current due to these
hanges in the load.

The conjunct variation of output current and air utilization
actor, together with the consequent variation of the inlet fuel
ass flow, is the principal way to regulate the electric power

roduction. In this paper, SOFC stack operates at constant air
ow, and with the air utilization factor changed proportionally to
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Table 1
Operating point data

Power (kW) 100
Stack voltage (V) 286.3
Stack current (A) 300
Number of cells 384
Number of stacks 1
Open circuit voltage for each cell (V) 0.935
Input fuel flow (×10−3 kmol s−1) 1.2
Input air flow (×10−3 kmol s−1) 2.4
Cell area (cm2) 1000
Cell temperature (◦C) 1000
Transfer coefficient, α 0.5
Ohmic resistance constant, βr −2870
Ohmic resistance constant, αr 0.2
Temperature constant, T0 (K) 923
Limiting current (A m−2) 0.8
KH2 (×10−4 kmol atm−1 s−1) 8.43

• Linear MPC using a model obtained by ARX identification of
the complete system model at nominal operating conditions
[5].

• Fuzzy Hammerstein MPC.

The MATLAB implementation of quadratic programming is
used [38]. The MPC parameters are selected according to the

Fig. 9. (a) Variation of fuel flow and (b) variation of temperature.

tuning rules given in [39]. The two methods use identical control
parameters.

The focus of the following simulations is to contrast the per-
formance of the MPC framework using the Hammerstein model
and the linear model with the complete SOFC model.

The performances using both the linear and Hammerstein
models are evaluated with constraints. Fig. 10 shows the out-
put voltage response of the SOFC due to the change in fuel
flow input. Comparing the responses, one will notice that the
Fig. 8. (a) Load step changes and (b) output current. Fig. 10. Output voltage response.
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Hammerstein model yields a significantly better closed-loop
response.

To evaluate the performance of the control system, the inte-
gral of time absolute error (ITAE) will be used:

ITAE =
∫ Tf

0
[β|e(t)|t] dt (24)

where Tf is a finite time chosen somewhat bigger than the rising
time and around the settling time, e(t) is the error which is the
difference between the measured output and the set-point which
is chosen as a unit step, and β is a scaling factor. The resulting
ITAE using linear MPC is 1501.3, which is rather higher than
that of using Hammerstein MPC (352.6).

6. Conclusions

The Hammerstein model is a special kind of nonlinear sys-
tems. This paper proposes a multivariable fuzzy Hammerstein
(FH) model of a SOFC.

This work has described a model based controller (MPC) for
the regulation of a SOFC. A MPC based on a FH model has been
developed, enabling the use of optimal control to satisfy power
demands.

It is clear that the success of MPC is highly dependent on
having a reliable SOFC model. It is very important to look for
a
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a
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applications, in: F. Allgöwer, A. Zheng (Eds.), Nonlinear Model Pre-
dictive Control. Ser. Progress in Systems and Control Theory, vol. 26,
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